organic compounds

13263 measured reflections

 $R_{\rm int} = 0.027$

3173 independent reflections

2202 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of 4-nitrostilbene

Rodolfo Moreno-Fuquen,^a* Lina Aguirre^a and Alan R. Kennedy^b

^aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and ^bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: rodimo26@yahoo.es

Received 20 October 2008; accepted 29 October 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.135; data-to-parameter ratio = 20.6.

In the title compound, $C_{14}H_{11}NO_2$, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the attached benzene ring but is rotated about the C–N bond by 5.84 (12)°. This redetermination results in a crystal structure with significantly higher precision than the original determination [Hertel & Romer (1931). Z. Kristallogr. **76**, 467–469], and the intermolecular interactions have been established. In the crystal structure, molecules are linked by C–H···O hydrogen bonds to generate C(5), C(13) and edgefused $R_3^3(28)$ rings.

Related literature

For a previous study of the title compound, see: Hertel & Romer (1931). For background information on photonic materials, see: Luo *et al.* (2003); Vidal *et al.* (2008); Park *et al.* (2004). For general background, see: Allen *et al.* (1987); Etter (1990); Nardelli (1995).

Experimental

Crystal data $C_{14}H_{11}NO_2$ $M_r = 225.24$ Orthorhombic, *Pbca* a = 10.0839 (3) Å b = 7.6849 (2) Å c = 28.1176 (8) Å

 $V = 2178.94 (11) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 123 (2) K $0.40 \times 0.40 \times 0.18 \text{ mm}$

Data collection

Oxford Xcalibur-S diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\rm min} = 0.965, T_{\rm max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	154 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
3173 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Tabl	e 1		

Hydrogen-bond	geometry	(A,	°))
---------------	----------	-----	----	---

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.95	2.55	3.3762 (17)	146
C12−H12···O1 ⁱⁱ	0.95	2.66	3.4139 (16)	137
C12-H12···O2 ⁱⁱⁱ	0.95	2.74	3.4046 (17)	128
$C11-H11\cdots O2^{iii}$	0.95	2.90	3.4820 (17)	121
Symmetry codes: (i) x	$-\frac{1}{2}, -y + \frac{1}{2}, -z$	z + 2; (ii) $-x + 2$	$\frac{3}{2}, -y, z - \frac{1}{2}$; (iii) x,	$-y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2430).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Etter, M. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hertel, E. & Romer, G. H. (1931). Z. Kristallogr. 76, 467-469.
- Luo, J., Haller, M., Li, H., Kim, T.-D. & Jen, A. K.-Y. (2003). Adv. Mater. 15, 1635–1638.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.
- Park, G., Jung, W. S. & Ra, C. S. (2004). Bull. Korean Chem. Soc. 25, 1427– 1429.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vidal, X., Fedyanin, A., Molinos-Gomez, A., Rao, S., Martorell, J. & Petrov, D. (2008). Opt. Lett. 33, 699–701.

supplementary materials

Acta Cryst. (2008). E64, o2259 [doi:10.1107/S1600536808035459]

Redetermination of 4-nitrostilbene

R. Moreno-Fuquen, L. Aguirre and A. R. Kennedy

Comment

A great interest in the design of materials with potential applications in photonic technology has been developed in recent years (Luo *et al.*, 2003; Vidal *et al.*, 2008). Significant efforts have been focused on studying of design and the synthesis of organic molecules with potential nonlinear optical response (NLO), improved optical transparency and thermal stability (Park *et al.*, 2004). A specific type of these molecules consists of electron donor and acceptor end groups interacting through a conjugating segment. In a first stage of work in our group, the synthesis of a stilbene molecule with nitro group with electron-withdrawing capacity as a substituent in *para* position, is considered. In order to obtain detailed structural information on the molecular conformation, its NLO responses, its hydrogen bonded interactions and its supramolecular arrangement, the crystal structure of *p*-nitrostilbene (I) was undertaken.

Perspective view of the title molecule, showing the atomic numbering scheme, is given in Fig. 1. The benzene rings are twisted out of the ethylene plane, as defined by the torsion angles C3—C4—C7—C8 and C7—C8—C9—C14 therefore the benzene rings are inclined to each other showing a dihedral angle between their mean planes of 8.42 (6)°. The nitro group is almost coplanar with the benzene ring but it is rotated about the C—N bond with an angle of rotation of 5.84 (12)°. If compared with the C7—C8 bond length to the expected value for a localized double bond [1.317 (13) Å, Allen *et al.*, 1987], the title distance shows some lengthening that is indicative of some π conjugation of the two benzene rings through the central ethene bridge. The torsion angle between the benzene rings [C4—C7=C8—C9 = 178.48 (12)°] indicates a *trans* geometry between them. The crystal structure of (I) is stabilized by weak C—H···O hydrogen-bonding interactions [Nardelli, 1995, Table 1]. The formation of the framework can be explained in terms of three-one substructures. In the first substructure atom C2 in the molecule at (*x*, *y*, *z*) acts as a hydrogen bond donor to nitro atom O1 in the molecule at (*x*, *y*, *z*), acts as hydrogen bond donor to nitro atom O2 in the molecule at (*x*, *y*, *z*) acts as hydrogen bond donor to nitro atom C12 in the molecule at (*x*, *y*, *z*) acts as hydrogen bond donor to nitro atom C12 in the molecule at (*x*, *y*, *z*) acts as hydrogen bond donor to nitro atom C12 in the molecule at (*x*, *y*, *z*) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (*x*, *y*, *z*) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (*x*, *y*, *z*) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (*x*, *y*, *z*) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (*x*, *y*, *z*) and atom O1 in the molecule at (*x*, *y*, *z*) acts simultaneously as hydrogen bond donor to atoms O1 in the molecule at (*x*, *y*, *z*) and atom O1 i

Experimental

The synthesis of (I) was prepared by taking equimolar quantities of benzyltriphenylphosphonium bromide (0.9600 g, 2.20 mmol) and 4-nitrobenzaldehyde (0.3355 g, 2.20 mmol). The mixture was stirred and it was taken to reflux in dry THF in a nitrogen atmosphere at 273 K. 3.3 mmol of potassium tert-butoxide was dissolved in 5 ml of t-butanol and this solution was added drop to drop to the phosphonium mixture obtaining a change in the color of the reaction mixture and completion of the reaction after two hours. Single crystals suitable for X-ray analysis were obtained by evaporation at room temperature using ethyl acetate as solvent.

Refinement

The space group Pbca for *p*-nitrostilbene was assigned from the systematic absences. All H-atoms were located from difference maps and then treated as riding atoms [C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Figures

Fig. 1. An *ORTEP-3* (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.

Fig. 2. (Part of the crystal structure of (I) showing the formation of C(5) chains which are running parallel to the [100] direction. [Symmetry codes: (i) 1/2 + x, 1/2 - y, 2 - z; (ii) 1 + x, y, z; (iii) -1/2 + x, 1/2 - y, 2 - z; (iv) -1 + x, y, z].

Fig. 3. Part of the crystal structure of (I) showing the formation of C(13) chains along [001]. [Symmetry codes: (i) x, 1/2 - y, 1/2 + z; (ii) x, 1/2 - y, -1/2 + z;

Fig. 4. Part of the crystal structure of (I) showing the formation of edge-fused $R_3^{-3}(28)$ rings along [001]. [Symmetry codes: (i) 3/2 - x, -y, 1/2 + z; (ii) x, 1/2 - y, 1/2 + z; (iii) 3/2 - x, 1/2 + z; (iv) 3/2 - x, -y, -1/2 + z]; (v) x, 1/2 - y, -1/2 + z; (vi) x, y, -1 + z; (vii) 3/2 - x, y, -1 + z.

4-nitrostilbene

Crystal data

C ₁₄ H ₁₁ NO ₂	$D_{\rm x} = 1.373 \ {\rm Mg \ m^{-3}}$
$M_r = 225.24$	Melting point: 421(1) K
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 5152 reflections
a = 10.0839 (3) Å	$\theta = 2.7 - 30.7^{\circ}$
b = 7.6849 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 28.1176 (8) Å	T = 123 (2) K
$V = 2178.94 (11) \text{ Å}^3$	Cut lathe, light yellow
Z = 8	$0.40\times0.40\times0.18~mm$
$F_{000} = 944$	

Data collection

Oxford Xcalibur-S diffractometer	2202 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.027$
Monochromator: graphite	$\theta_{max} = 30.0^{\circ}$
ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)	$h = -14 \rightarrow 12$
$T_{\min} = 0.965, T_{\max} = 0.985$	$k = -10 \rightarrow 10$
13263 measured reflections	<i>l</i> = −37→39
3173 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0501P)^2 + 0.491P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
3173 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displ	lacement	parameters	(Å	2)
				1		1	1	1		1	1	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.69853 (10)	0.14689 (14)	1.05469 (3)	0.0360 (3)
O2	0.51679 (11)	0.28695 (16)	1.04197 (4)	0.0453 (3)
N1	0.60967 (11)	0.19752 (15)	1.02843 (4)	0.0267 (3)
C1	0.61582 (12)	0.15108 (16)	0.97771 (4)	0.0209 (3)
C2	0.51199 (13)	0.19912 (17)	0.94826 (5)	0.0232 (3)
H2	0.4364	0.2572	0.9607	0.028*
C3	0.52059 (13)	0.16074 (16)	0.90021 (5)	0.0239 (3)
H3	0.4496	0.1910	0.8796	0.029*
C4	0.63344 (13)	0.07749 (15)	0.88166 (4)	0.0227 (3)

supplementary materials

C5	0.73329 (13)	0.02692 (17)	0.91315 (5)	0.0247 (3)
Н5	0.8083	-0.0340	0.9013	0.030*
C6	0.72573 (13)	0.06320 (16)	0.96111 (5)	0.0244 (3)
H6	0.7945	0.0285	0.9822	0.029*
C7	0.65267 (13)	0.04480 (16)	0.83078 (5)	0.0245 (3)
H7	0.7231	-0.0309	0.8221	0.029*
C8	0.58014 (13)	0.11181 (16)	0.79561 (4)	0.0236 (3)
H8	0.5084	0.1851	0.8044	0.028*
C9	0.60077 (12)	0.08280 (15)	0.74429 (4)	0.0218 (3)
C10	0.50863 (13)	0.15248 (16)	0.71267 (4)	0.0229 (3)
H10	0.4342	0.2142	0.7247	0.027*
C11	0.52360 (13)	0.13330 (17)	0.66384 (5)	0.0253 (3)
H11	0.4599	0.1819	0.6428	0.030*
C12	0.63151 (13)	0.04317 (16)	0.64595 (5)	0.0261 (3)
H12	0.6422	0.0302	0.6126	0.031*
C13	0.72366 (13)	-0.02793 (17)	0.67678 (5)	0.0263 (3)
H13	0.7973	-0.0904	0.6645	0.032*
C14	0.70911 (13)	-0.00852 (16)	0.72570 (5)	0.0246 (3)
H14	0.7730	-0.0575	0.7466	0.030*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0325 (6)	0.0503 (6)	0.0254 (5)	-0.0005 (5)	-0.0072 (5)	0.0044 (5)
O2	0.0382 (6)	0.0687 (8)	0.0291 (5)	0.0153 (6)	-0.0009 (5)	-0.0153 (5)
N1	0.0250 (6)	0.0335 (6)	0.0217 (5)	-0.0050 (5)	-0.0026 (5)	0.0008 (5)
C1	0.0213 (6)	0.0227 (6)	0.0188 (6)	-0.0036 (5)	-0.0003 (5)	0.0011 (5)
C2	0.0191 (6)	0.0269 (6)	0.0236 (6)	0.0000 (5)	-0.0005 (5)	-0.0002 (5)
C3	0.0225 (6)	0.0264 (6)	0.0226 (6)	-0.0018 (5)	-0.0041 (5)	0.0024 (5)
C4	0.0263 (6)	0.0196 (5)	0.0220 (6)	-0.0040 (5)	0.0010 (5)	0.0004 (5)
C5	0.0232 (6)	0.0242 (6)	0.0267 (7)	0.0028 (5)	0.0023 (5)	0.0001 (5)
C6	0.0231 (6)	0.0231 (6)	0.0271 (7)	0.0013 (5)	-0.0022 (5)	0.0039 (5)
C7	0.0244 (6)	0.0237 (6)	0.0253 (6)	0.0008 (5)	0.0014 (5)	-0.0023 (5)
C8	0.0243 (6)	0.0223 (6)	0.0242 (6)	-0.0003 (5)	0.0012 (5)	-0.0004 (5)
C9	0.0254 (6)	0.0177 (5)	0.0222 (6)	-0.0030 (5)	0.0010 (5)	-0.0002 (5)
C10	0.0222 (6)	0.0218 (6)	0.0247 (6)	0.0007 (5)	0.0017 (5)	-0.0005 (5)
C11	0.0282 (7)	0.0238 (6)	0.0240 (6)	-0.0002 (5)	-0.0028 (5)	0.0013 (5)
C12	0.0343 (7)	0.0225 (6)	0.0215 (6)	-0.0026 (6)	0.0027 (6)	-0.0023 (5)
C13	0.0257 (7)	0.0222 (6)	0.0309 (7)	0.0017 (5)	0.0057 (6)	-0.0039 (5)
C14	0.0240 (7)	0.0213 (6)	0.0285 (7)	0.0000 (5)	-0.0038 (5)	0.0012 (5)

Geometric parameters (Å, °)

01—N1	1.2246 (14)	С7—Н7	0.9500
O2—N1	1.2225 (15)	C8—C9	1.4750 (17)
N1-C1	1.4712 (16)	С8—Н8	0.9500
C1—C6	1.3793 (17)	C9—C10	1.3931 (17)
C1—C2	1.3851 (18)	C9—C14	1.3998 (17)
C2—C3	1.3855 (17)	C10—C11	1.3890 (18)

С2—Н2	0.9500	C10—H10	0.9500
C3—C4	1.4058 (18)	C11—C12	1.3845 (18)
С3—Н3	0.9500	C11—H11	0.9500
C4—C5	1.3960 (18)	C12—C13	1.3833 (19)
C4—C7	1.4653 (17)	C12—H12	0.9500
C5—C6	1.3789 (18)	C13—C14	1.3914 (18)
С5—Н5	0.9500	С13—Н13	0.9500
С6—Н6	0.9500	C14—H14	0.9500
С7—С8	1.3334 (18)		
O2—N1—O1	123.46 (11)	С4—С7—Н7	117.1
O2—N1—C1	118.07 (11)	С7—С8—С9	126.15 (12)
01—N1—C1	118.46 (12)	С7—С8—Н8	116.9
C6—C1—C2	122.37 (12)	С9—С8—Н8	116.9
C6—C1—N1	118.74 (11)	C10—C9—C14	118.36 (12)
C2-C1-N1	118.88 (11)	C10—C9—C8	118.19 (11)
C1—C2—C3	118.62 (12)	C14—C9—C8	123.45 (12)
C1—C2—H2	120.7	C11—C10—C9	121.17 (12)
C3—C2—H2	120.7	C11—C10—H10	119.4
C2—C3—C4	120.62 (12)	C9—C10—H10	119.4
С2—С3—Н3	119.7	C12—C11—C10	119.85 (12)
С4—С3—Н3	119.7	C12—C11—H11	120.1
C5—C4—C3	118.37 (11)	C10—C11—H11	120.1
C5—C4—C7	118.43 (12)	C13—C12—C11	119.86 (12)
C3—C4—C7	123.18 (11)	С13—С12—Н12	120.1
C6—C5—C4	121.61 (12)	С11—С12—Н12	120.1
С6—С5—Н5	119.2	C12—C13—C14	120.42 (12)
С4—С5—Н5	119.2	C12—C13—H13	119.8
C5—C6—C1	118.32 (12)	C14—C13—H13	119.8
С5—С6—Н6	120.8	C13—C14—C9	120.34 (11)
C1—C6—H6	120.8	C13—C14—H14	119.8
C8—C7—C4	125.82 (12)	C9—C14—H14	119.8
С8—С7—Н7	117.1		
O2—N1—C1—C6	174.44 (12)	C5—C4—C7—C8	-167.03 (12)
O1—N1—C1—C6	-4.53 (17)	C3—C4—C7—C8	11.53 (19)
O2—N1—C1—C2	-4.71 (18)	C4—C7—C8—C9	178.48 (12)
O1—N1—C1—C2	176.32 (11)	C7—C8—C9—C10	174.99 (12)
C6—C1—C2—C3	-1.49 (19)	C7—C8—C9—C14	-6.1 (2)
N1—C1—C2—C3	177.63 (11)	C14—C9—C10—C11	-0.39 (18)
C1—C2—C3—C4	-1.10 (18)	C8—C9—C10—C11	178.59 (11)
C2—C3—C4—C5	3.13 (18)	C9-C10-C11-C12	0.17 (18)
C2—C3—C4—C7	-175.43 (12)	C10-C11-C12-C13	0.24 (19)
C3—C4—C5—C6	-2.73 (18)	C11—C12—C13—C14	-0.42 (19)
C7—C4—C5—C6	175.91 (11)	C12—C13—C14—C9	0.19 (18)
C4—C5—C6—C1	0.27 (19)	C10-C9-C14-C13	0.21 (17)
C2—C1—C6—C5	1.90 (19)	C8—C9—C14—C13	-178.71 (11)
N1—C1—C6—C5	-177.22 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2…O1 ⁱ	0.95	2.55	3.3762 (17)	146
C12—H12…O1 ⁱⁱ	0.95	2.66	3.4139 (16)	137
C12—H12…O2 ⁱⁱⁱ	0.95	2.74	3.4046 (17)	128
C11—H11····O2 ⁱⁱⁱ	0.95	2.90	3.4820 (17)	121

Symmetry codes: (i) *x*-1/2, -*y*+1/2, -*z*+2; (ii) -*x*+3/2, -*y*, *z*-1/2; (iii) *x*, -*y*+1/2, *z*-1/2.

Fig. 3

Fig. 4

